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Abstract

Alzheimer’s disease (AD) represents the most predominant form of dementia. Currently, 5.8 million
Americans are living with AD; and this number is projected to rise to 14 million in 2050. With only a handful of
existing drugs to alleviate symptoms, sadly there is no disease modifying treatment option available for AD patients.
The recent development of a closely watched AD drug trial has caught attention of patients, scientists, clinicians and
drug developers. In this commentary, I'd like to briefly review the key findings of Aducanumab and discuss the

broader implications on the guiding principles and strategies in AD therapeutic development.
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Aducanumab: Mechanisms and Trials

Amyloid beta (Af) protein is prone to aggregate and makes up the deposited plaques, a defining pathology of
AD. Aggregated AP, more so than the monomeric Af, can be readily recognized by the circulating antibodies
produced by the human humoral immune system [1]. It was demonstrated that anti-aggregated AP antibody, while
exist in abundance in young individuals, declines in cognitively normal seniors and diminishes further in AD patients
[1]. Given the pathologic involvement of AP oligomers and plaques, these presumably protective antibodies were
deemed valuable as targeted immunotherapy. Aducanumab, a human IgG1 monoclonal antibody, was cloned directly
from a de-identified blood lymphocyte library collected from healthy elderly subjects with no signs of cognitive
impairment and cognitively impaired elderly subjects with unusually slow cognitive decline [2].

In vitro, Aducanumab displays high affinity towards oligomeric and insoluble fibrillar AB:-42, but not soluble
APi-40.0n AD brain tissue, Aducanumab selectively stains amyloid plaques [2]. In vivo, a murine chimeric version of
Aducanumab traffics from the periphery to the brain and preferentially binds to the parenchymal AB. Chronic dosing
of such antibody dose-dependently reduces amyloid load in AD mouse model Tg2576 mice [2].

In a Phase Ib double-blind multicenter clinical trial PRIME (ClinicalTrials.gov identifier NCT01677572), 165
patients with prodromal or mild AD were randomized and received IV infusion of placebo or one of 4 doses of
Aducanumab for 12 months. Molecular positron emission tomography (PET) imaging with florbetapir was used to
confirm Af pathology at the time of patient recruitment. Treatment with Aducanumab effectively removed brain Af
plaques in a dose- and time-dependent manner, based on PET imaging [2]. In conjunction, a slowing of cognitive
decline was tentatively suggested, although the trial was not powered to prove clinical endpoints. Adverse effect of

ARIA-E was transient but increased with the dosing of Aducanumab.

Two large Phase 3 trials, ENGAGE (ClinicalTrials.gov Identifier NCTo02477800) and EMERGE
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(ClinicalTrials.gov Identifier NCT02484547), were conducted by Biogen and Eisai to demonstrate the clinical benefit
of Aducanumab. A combined more than 3200 patients with mild cognitive impairment (MCI) due to Alzheimer's
disease or mild AD were recruited worldwide and received placebo or one of 2 doses of Aducanumab. At 18t month, a
futility analysis concluded that trials would not reach their primary endpoint, i.e. the slowing of cognitive decline. On

March 21, 2019, both trials were terminated abruptly.

The failure of Aducanumab at the late stage development in spite the impressive Phase 1b results was a
shock to patients, clinicians, and scientists alike. While we are waiting for the detailed analysis from the trial
sponsors, several points are worthwhile discussing now. First, how reliable is PET imaging as a sole molecular
readout of AP modification? Until the completion of an autopsy examination, the potential interference by plaque
modifying agent with PET detection remains a concern at the technical level. Second, it is well known that AB
deposition may begin two decades or more before clinically noticeable cognitive decline. Although precaution was
taken in the trial design, but is it still too late to eliminate AP in the patients with MCI or mild AD? Should other
molecules, such as tau, be targeted at this stage instead? Last, does the result formally discredit the amyloid

hypothesis (see next section) and a new paradigm is needed to direct the translational effort from now on?

The Amyloid Hypothesis

Since Alois Alzheimer described the first index case in 1906, tremendous progress has been made in the
diagnosis, pathophysiology, genetics, molecular and cellular biology of AD. Formulated originally in early 1990s, the
amyloid hypothesis conceptualized numerous clinical and genetic research findings and assigned a pivotal role of Ap,
in the form of dyshomeostasis, in AD pathogenesis [3-6]. It coincides succinctly with several key observations: 1) a
subset of AD patients, who have early disease onset, bear genetic mutations in familial forms, which include germline
mutations in APP, PSEN1 or PSEN2 that invariably result in the increased Af42 production; 2) all AD brains accumulate
senile plaques that are composed of aggregated AB; 3) although majority of AD cases (sporadic form) are late onset
and lacking familial mutations, they share similar pathological features with familial AD. Since then, this influential

hypothesis has guided a vast amount of studies in revealing the pathological events downstream of A imbalance [7].

The amyloid hypothesis logically argues for a therapeutic strategy towards reducing the production of or
removal of AB in AD. Unfortunately, agents targeting the enzymes involved in APP processing showed no clinical
benefit so far [8]. Numerous immunotherapy efforts to selectively deplete A molecule from the brain, either by active
or passive immunization, failed to modify AD effectively [8]. In principle, Aducanumab offers an improved design
over the earlier anti-Af trials in two key aspects: 1) pre-screening of patients with amyloid PET imaging to ensure
target presence, and 2) selective targeting of aggregated AP, a form directly implicated in AD pathology. The

disappointing Aducanumab failure calls for a re-examination of our basic understanding of AD pathogenesis.

Broaden the Horizon for AD

From diagnosis to treatments, the complexity of AD and the challenges it imposes cannot be overstated. To
this day, most would agree that AD by no means should be considered a neural-centric disease. One major limitation
of the amyloid hypothesis is the over-emphasis on the events initiated from the neurons. It is clear that sporadic AD is
genetically distinct from the familial form. Large scale genetic surveys on late onset AD have identified many risk
genes involved in other biological processes, beyond Ap biogenesis [9-11]. The functionality of human brains can be
profoundly impacted by multitude of factors, individually, sequentially, or simultaneously. In addition to increased
protein aggregation, AD brains often display reduced protein degradation, defective blood-brain barrier (BBB) and
vasculature, profound inflammatory response, diminished neurogenesis, disruption of sleep and circadian rhythm,

and microbial infections, etc. [12-15] (Figure 1). In addition, peripheral and systemic changes can powerfully modify
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the CNS pathology [16-18]. Hence, the debate continues whether Af functions as the primary initiator or a by-stander
of other pathological processes, a condition may likely even vary between AD patients. Regardless the role of Ap, it is
time to expand the scale of research investigations by testing new hypothesis, developing new models, and identify

new pathways and targets.
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Figure 1: Multiple factors influence neurodegeneration
Next Generation AD Therapies

Our apprehension on the complexity of AD points to an urgent need to diversify the therapeutic approaches.
Several early-stage developments target tau, a neuronal protein that pathologically interacts with Ap and aggregates
into neurofibrillary tangles, the latter is more proximate to neuronal dysfunction than plaques in AD [19,20]. Beyond
AP and tau, significant number of AD brains also accumulate a-synuclein and TDP-43 aggregates, which are
traditionally associated with Parkinson’s disease and amyotrophic lateral sclerosis, respectively [21-23]. Given such
intensity of mixed etiology, it is not difficult to foresee that targeting single misfolded protein species individually may
not be sufficient to halt AD. On the flip side of the protein aggregates, boosting the brain’s capacity to dispose protein waste
by way of modifying the functions of proteasomes or autophago-lysosomes is another crucial avenue to tackle AD [24,25].

Neuroinflammation constitutes a key component of AD pathology [26,27]. Notably, a number of risk genes
for sporadic AD exclusively operate in the immune system, esp. microglia, brain’s resident immune cells [11,28,29].
However, it is clear by now that non-specific anti-inflammation drugs do not benefit AD patients [30-32]. Current
neuroinflammation research aims to identify specific targets and pathways that are key drivers of inflammation,
synapse loss, neurotoxicity and cognitive decline. Impressive progress in this area is being made and will facilitate the
development of next generation of treatments.

On the other hand, lessening the risk of vascular disease has shown definitive beneficial effect on AD [33,34].
Healthy sleep-wake cycles may improve Af and tau dynamics and reduce the accumulation of these aggregates

[35,36]. Life style changes in the form of exercise, dietary modification, and diabetes management, can significantly
diminish the risk of AD [37,38].
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Putting behind the frustration of the failed clinical trials, it is time to open one’s mind and broaden the scope

of our searches. Given the multifactorial nature of AD, an eventual combinational therapy may be essential for a

successful disease modifying therapy.
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