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Abstract 

Alzheimer’s disease (AD) represents the most predominant form of dementia. Currently, 5.8 million 

Americans are living with AD; and this number is projected to rise to 14 million in 2050. With only a handful of 

existing drugs to alleviate symptoms, sadly there is no disease modifying treatment option available for AD patients. 

The recent development of a closely watched AD drug trial has caught attention of patients, scientists, clinicians and 

drug developers. In this commentary, I’d like to briefly review the key findings of Aducanumab and discuss the 

broader implications on the guiding principles and strategies in AD therapeutic development. 

Keywords: Alzheimer’s disease, Aducanumab, amyloid hypothesis, clinical trials, Amyloid beta, PRIME, 

ENGAGE, EMERGE 

Aducanumab: Mechanisms and Trials 

Amyloid beta (Aβ) protein is prone to aggregate and makes up the deposited plaques, a defining pathology of 

AD.  Aggregated Aβ, more so than the monomeric Aβ, can be readily recognized by the circulating antibodies 

produced by the human humoral immune system [1]. It was demonstrated that anti-aggregated Aβ antibody, while 

exist in abundance in young individuals, declines in cognitively normal seniors and diminishes further in AD patients 

[1]. Given the pathologic involvement of Aβ oligomers and plaques, these presumably protective antibodies were 

deemed valuable as targeted immunotherapy. Aducanumab, a human IgG1 monoclonal antibody, was cloned directly 

from a de-identified blood lymphocyte library collected from healthy elderly subjects with no signs of cognitive 

impairment and cognitively impaired elderly subjects with unusually slow cognitive decline [2]. 

In vitro, Aducanumab displays high affinity towards oligomeric and insoluble fibrillar Aβ1-42, but not soluble 

Aβ1-4o. On AD brain tissue, Aducanumab selectively stains amyloid plaques [2]. In vivo, a murine chimeric version of 

Aducanumab traffics from the periphery to the brain and preferentially binds to the parenchymal Aβ. Chronic dosing 

of such antibody dose-dependently reduces amyloid load in AD mouse model Tg2576 mice [2].  

In a Phase Ib double-blind multicenter clinical trial PRIME (ClinicalTrials.gov identifier NCT01677572), 165 

patients with prodromal or mild AD were randomized and received IV infusion of placebo or one of 4 doses of 

Aducanumab for 12 months. Molecular positron emission tomography (PET) imaging with florbetapir was used to 

confirm Aβ pathology at the time of patient recruitment. Treatment with Aducanumab effectively removed brain Aβ 

plaques in a dose- and time-dependent manner, based on PET imaging [2]. In conjunction, a slowing of cognitive 

decline was tentatively suggested, although the trial was not powered to prove clinical endpoints. Adverse effect of 

ARIA-E was transient but increased with the dosing of Aducanumab. 

Two large Phase 3 trials, ENGAGE (ClinicalTrials.gov Identifier NCT02477800) and EMERGE 
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(ClinicalTrials.gov Identifier NCT02484547), were conducted by Biogen and Eisai to demonstrate the clinical benefit 

of Aducanumab. A combined more than 3200 patients with mild cognitive impairment (MCI) due to Alzheimer's 

disease or mild AD were recruited worldwide and received placebo or one of 2 doses of Aducanumab. At 18th month, a 

futility analysis concluded that trials would not reach their primary endpoint, i.e. the slowing of cognitive decline. On 

March 21, 2019, both trials were terminated abruptly. 

The failure of Aducanumab at the late stage development in spite the impressive Phase 1b results was a 

shock to patients, clinicians, and scientists alike. While we are waiting for the detailed analysis from the trial 

sponsors, several points are worthwhile discussing now.  First, how reliable is PET imaging as a sole molecular 

readout of Aβ modification? Until the completion of an autopsy examination, the potential interference by plaque 

modifying agent with PET detection remains a concern at the technical level.  Second, it is well known that Aβ 

deposition may begin two decades or more before clinically noticeable cognitive decline. Although precaution was 

taken in the trial design, but is it still too late to eliminate Aβ in the patients with MCI or mild AD? Should other 

molecules, such as tau, be targeted at this stage instead? Last, does the result formally discredit the amyloid 

hypothesis (see next section) and a new paradigm is needed to direct the translational effort from now on? 

The Amyloid Hypothesis 

Since Alois Alzheimer described the first index case in 1906, tremendous progress has been made in the 

diagnosis, pathophysiology, genetics, molecular and cellular biology of AD. Formulated originally in early 1990s, the 

amyloid hypothesis conceptualized numerous clinical and genetic research findings and assigned a pivotal role of Aβ, 

in the form of dyshomeostasis, in AD pathogenesis [3-6]. It coincides succinctly with several key observations: 1) a 

subset of AD patients, who have early disease onset, bear genetic mutations in familial forms, which include germline 

mutations in APP, PSEN1 or PSEN2 that invariably result in the increased Aβ42 production; 2) all AD brains accumulate 

senile plaques that are composed of aggregated Aβ; 3) although majority of AD cases (sporadic form) are late onset 

and lacking familial mutations, they share similar pathological features with familial AD.  Since then, this influential 

hypothesis has guided a vast amount of studies in revealing the pathological events downstream of Aβ imbalance [7].   

The amyloid hypothesis logically argues for a therapeutic strategy towards reducing the production of or 

removal of Aβ in AD. Unfortunately, agents targeting the enzymes involved in APP processing showed no clinical 

benefit so far [8]. Numerous immunotherapy efforts to selectively deplete Aβ molecule from the brain, either by active 

or passive immunization, failed to modify AD effectively [8]. In principle, Aducanumab offers an improved design 

over the earlier anti-Aβ trials in two key aspects: 1) pre-screening of patients with amyloid PET imaging to ensure 

target presence, and 2) selective targeting of aggregated Aβ, a form directly implicated in AD pathology. The 

disappointing Aducanumab failure calls for a re-examination of our basic understanding of AD pathogenesis. 

Broaden the Horizon for AD 

From diagnosis to treatments, the complexity of AD and the challenges it imposes cannot be overstated.  To 

this day, most would agree that AD by no means should be considered a neural-centric disease. One major limitation 

of the amyloid hypothesis is the over-emphasis on the events initiated from the neurons. It is clear that sporadic AD is 

genetically distinct from the familial form. Large scale genetic surveys on late onset AD have identified many risk 

genes involved in other biological processes, beyond Aβ biogenesis [9-11]. The functionality of human brains can be 

profoundly impacted by multitude of factors, individually, sequentially, or simultaneously. In addition to increased 

protein aggregation, AD brains often display reduced protein degradation, defective blood-brain barrier (BBB) and 

vasculature, profound inflammatory response, diminished neurogenesis, disruption of sleep and circadian rhythm, 

and microbial infections, etc. [12-15] (Figure 1). In addition, peripheral and systemic changes can powerfully modify 
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the CNS pathology [16-18]. Hence, the debate continues whether Aβ functions as the primary initiator or a by-stander 

of other pathological processes, a condition may likely even vary between AD patients. Regardless the role of Aβ, it is 

time to expand the scale of research investigations by testing new hypothesis, developing new models, and identify 

new pathways and targets. 

 
Figure 1: Multiple factors influence neurodegeneration 

Next Generation AD Therapies 

Our apprehension on the complexity of AD points to an urgent need to diversify the therapeutic approaches. 

Several early-stage developments target tau, a neuronal protein that pathologically interacts with Aβ and aggregates 

into neurofibrillary tangles, the latter is more proximate to neuronal dysfunction than plaques in AD [19,20]. Beyond 

Aβ and tau, significant number of AD brains also accumulate α-synuclein and TDP-43 aggregates, which are 

traditionally associated with Parkinson’s disease and amyotrophic lateral sclerosis, respectively [21-23]. Given such 

intensity of mixed etiology, it is not difficult to foresee that targeting single misfolded protein species individually may 

not be sufficient to halt AD.  On the flip side of the protein aggregates, boosting the brain’s capacity to dispose protein waste 

by way of modifying the functions of proteasomes or autophago-lysosomes is another crucial avenue to tackle AD [24,25]. 

Neuroinflammation constitutes a key component of AD pathology [26,27]. Notably, a number of risk genes 

for sporadic AD exclusively operate in the immune system, esp. microglia, brain’s resident immune cells [11,28,29]. 

However, it is clear by now that non-specific anti-inflammation drugs do not benefit AD patients [30-32]. Current 

neuroinflammation research aims to identify specific targets and pathways that are key drivers of inflammation, 

synapse loss, neurotoxicity and cognitive decline. Impressive progress in this area is being made and will facilitate the 

development of next generation of treatments. 

On the other hand, lessening the risk of vascular disease has shown definitive beneficial effect on AD [33,34]. 

Healthy sleep-wake cycles may improve Aβ and tau dynamics and reduce the accumulation of these aggregates 

[35,36]. Life style changes in the form of exercise, dietary modification, and diabetes management, can significantly 

diminish the risk of AD [37,38]. 
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Putting behind the frustration of the failed clinical trials, it is time to open one’s mind and broaden the scope 

of our searches. Given the multifactorial nature of AD, an eventual combinational therapy may be essential for a 

successful disease modifying therapy. 
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