Case Reports and Literature Review Volume 2 Article ID: 100007

Case Report

Acalculous Cholecystitis as a Complication of Epstein-Barr Virus: A Case Report

Ahmed Al-Muhsin^{1*}, Hesham Eltomy¹, and Antonio Privitera²

¹Department of General Surgery, King Fahd Military Medical Complex, Kingdom of Saudi Arabia

²Department of General Surgery, Kin Fahad Specialist Hospital Dammam, Kingdom of Saudi Arabia

*Corresponding author: Dr. Ahmed Mohammed Al.Muhsin, Department of General Surgery, King Fahd Military Medical Complex, Dammam, Kingdom of Saudi Arabia, Tel: +966501589990; E-mail: amuhsin90@gmail.com

Received: February 18, 2018; Accepted: March 26, 2018; Published: March 31, 2018

Copyright: ©2018 Al-Muhsin A, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Al-Muhsin A, Eltomy H, Privitera A (2018) Acalculous Cholecystitis as a Complication of Epstein-Barr Virus: A Case Report. Case Rep Lit Rev 2(1): 100007.

Abstract

Acute acalculous cholecystitis (AAC) is an uncommon disease mostly occurring in critically ill and immunosuppressed patients. Very few cases have been reported during the course of infectious diseases in particular Espstein-Barr virus (EBV). A wide range of complications have been reported in EBV infection including liver involvement that is usually self-limiting and characterized by mild elevation of liver enzymes. AAC during EBV infection can be the result of direct invasion of the virus or induced by cholestasis associated with infective hepatitis. Serological tests and ultrasound scan are the most common tools for diagnosis. Most cases resolve with antibiotic treatment. Very rarely a cholecystectomy is indicated. The authors present another case of the unusual association in a young female patient and review the literature.

Keywords: acute acalculous cholecystitis, epstein-barr virus, primary infection

Introduction

Acute Acalculous Cholecytitis (AAC) is a well-recognized disease characterized by inflammation of the gallbladder in the absence of stones. Most cases of AAC occur in immunosuppressed patients, following trauma, severe burns, long stay in the intensive care unit, and long-term total parenteral nutrition. Resuscitation from hemorrhagic shock, cardiac arrest, congestive heart failure, abdominal vasculitis has also been associated with the disease [1]. AAC has rarely been described in the course of systemic infections with secondary gallbladder involvement. Very few cases have been associated with the causative agents of Infectious Mononucleosis (IM), in particular Epstein Barr Virus (EBV) [2,3]. The authors report another case of this uncommon complication during EBV infection and review the literature.

Case Report

Exposure

A 27-year-old female presented to the emergency department with a 7-day history of fever, epigastric pain, nausea and vomiting. Past medical history was unremarkable apart from self-administration of herbal medications for weight loss. There was no history of smoking or alcohol intake. On examination she had mild fever of 37.9°C.

Page 1 of 5 Volume 2, Article ID: 100007

Abdominal examination showed tenderness in the right upper quadrant with positive Murphy's sign. There was no lymphadenopathy or any signs of upper respiratory tract infections.

Laboratory tests showed an elevated WBC 16.4 (NR $4^{-11} \times 10^9$ /L) with lymphocytosis 64.6% (NR 20-45%). Liver function tests were deranged: ALK 136 u/L (NR 50-136 u/L), ALT 289 u/L (NR 12-78 u/L), AST 237u/L (NR 15-37 u/L), total bilirubin 20 μ mol/L (NR 3-17 μ mol/L), direct bilirubin 16.2 μ mol/L (0-3 μ mol/L), albumin 30 g/L (NR 34-50 g/L). Amylase and lipase were normal. ESR was 67 mm/hr. EBV IgM was Positive, CMV IgM Positive. Hepatitis and HIV screen were negative.

During her admission the WBC raised and reached up to 26 with differential showing 74 % of lymphocytes.

An abdominal ultrasound scan revealed mild thickening of the gallbladder measuring 4.4 mm with no evidence of gallstones or dilatation of the biliary tree (Figure 1).

Figure 1: Abdominal ultrasound showing gallbladder wall thickening with absence of stones

A CT scan of the abdomen showed hyperenhancing gallbladder wall with mucosal edema and adjacent fat stranding. No stones were demonstrated. Subcentimetric paraortic, mesenteric and inguinal lymphnodes were noted.

An MRCP was carried out and this showed thickening and edema of the gallbladder with minimal pericholecystic fluid. The CBD was not dilated and had no filling defects.

A HIDA scan was performed revealing a homogeneous liver uptake while the gallbladder was not visualized suggesting acute acalculous cholecytitis.

The patient was treated conservatively with IV fluid and antibiotics (Ciprofloxacin). She made an uneventful recovery and was discharged on the 9th day post admission.

Discussion

AAC accounts for 5 to 10 % of all cases of cholecystitis. Many factors have been implicated in the pathogenesis including gallbladder ischemia, bile stasis, infections, and release of proinflammatory mediators [1].

Ultrasound scan of the gallbladder is the most accurate tool for the diagnosis of AAC. A gallbladder wall thickening >3 mm, distention of the gallbladder, localized tenderness, and pericholecystic fluid are the main diagnostic findings. The presence of two or more of these findings is considered diagnostic [4,5]. CT and radionuclide scans are also useful diagnostic modalities [1]. Supportive therapy and antibiotic treatment together with percutaneous cholecystostomy in severe cases are the mainstay of treatment. Cholecystectomy is rarely required [1].

The occurrence of AAC during IM is a rare event [1]. IM is a clinical entity characterized by the presence of fever, pharyngitis, and lymphadenopathy [2]. The most common causative agents are Epstein Barr Virus (EBV) and less commonly Cytomegalovirus (CMV). Toxoplasma gondii, viral hepatitis, and human herpes virus 6 can also rarely

be involved [3]. The majority of cases of IM experience an uneventful recovery, although a wide range of complications have been reported including liver impairment that is usually mild and self-limiting [6,7].

The exact mechanism of gallbladder involvement during IM is still unclear. Taking into consideration that viral hepatitis induces cholestasis, this may be considered a predisposing factor to inflammation [8,9]. Also, direct invasion of the gallbladder wall mucosa by the virus is possible since viral antigens have been isolated from the gallbladder epithelial cells [10].

Only 17 cases of AAC during EBV infection have been reported in the literature (Table 1) [11-25]. All cases are females, apart from one case diagnosed in a 21-year-old male patient. This contrasts with the general higher incidence of AAC in males [25]. AAC can occur at any age group but most commonly observed in adults especially in the fourth and eight decades of life. Most of the cases reported were young, presumably due to the greater occurrence of EBV infections in young adults [24]. Diagnosis was made with thorough clinical history and examination, pathognomonic features in peripheral blood films, and serological tests. In the reported case CMV IgM was thought to be a false-positive due to crossreactivity [26]. As in our case, patients presented with gastrointestinal symptoms including RUQ tenderness. The classical presentation of EBV infection with pharyngitis and lymphadenopathy was not predominant, and most cases showed elevation of liver enzymes [24]. Patients were treated conservatively with antibiotics and monitoring of liver function, although there was no difference in the outcome of patients receiving antibiotics compared to those who did not receive any antibiotic therapy. Surgical intervention for AAC during the course of EBV is usually unnecessary [24]. Only one of the reviewed cases underwent laparoscopic cholecystectomy for severe septic cholecystitis [15].

Table 1: Reported cases in the literature of AAC during EBV infection

Age / Gender	Lymphad enopathy	Pharyngitis	ALP (IU/L)	AST (IU/L)	ALT (IU/L)	Wall thickness (US/mm)	Management	Reference
53/F	-	-	1081 (40-120)	-	339	10	Medical	[11]
18/F	Yes	Yes	312 (38-148)	220 (5-45)	328 (5-45)	9	Medical	[8]
19/F	Yes	Yes	710 (<280)	426 (<40)	584 (<40)	8	Medical	[12]
20/F	Yes	Yes	727	171	299	-	Medical	[13]
22/F	Yes	Yes	2.2 μkat/L (0.5-2)	6.87 µkat/L (0-0.65)	12.79 μkat/L (0-0.8)	6	Medical	[14]
22/F	-	-	-	-	-	7	Surgical	[15]
29/F	Yes	Yes	161 (53-151)	121 (10-35)	166 (10-35)	15	Medical	[16]
18/F	No	No	146	118	-	>10	Medical	[17]
22/F	No	No	-	-	89	5	Medical	[18]
22/F	No	-	239	329	464	14	Medical	[19]
18/F	Yes	No	165	321	214	12	Medical	[20]
20/F	Yes	No	131	453	494	16	Medical	[20]
48/F	Yes	-	516 (90-260)	221 (5-35)	165 (5-40)	Marked	Medical	[21]
34/F	No	Yes	429 (35-105)	-	61 (10-45)	11.3	Medical	[22]
21/M	No	No	179 (<140)	172 (<40)	232 (<40)	4.5	Medical	[23]
30/F	Yes	No	376 (50-136)	233 (8-37)	220 (15-65)	7.4	Medical	[24]
27/F	No	No	136	237	289	4.4	Medical	Reported case (2017)

ALT: Alanine Aminotransferase; AST: Aspartate Aminotransferase; ALP: Alkaline Phosphatase
(): normal value range, mentioned in the study

Conclusions

AAC may result as a complication of IM and a high index of suspicion is needed in patients developing GI symptoms during the course of the disease. Ultrasound scan represents the main diagnostic investigation. Most cases can be treated conservatively with antibiotic therapy, and surgical intervention is rarely needed.

References

- 1. Barie PS, Eachempati SR (2003) Acute acalculous cholecystitis. Curr Gastroenterol Rep 5: 302-309.
- 2. Peter J, Ray CG (1998) Infectious mononucleosis. Pediatr Rev 19: 276-279.
- 3. Medovic R, Igrutinovic Z, Radojevic-Marjanovic R, Markovic S, Raskovic Z, et al. (2016) Clinical and laboratory differences between Epstein-Barr and cytomegalovirus infectious mononucleosis in children. Srp Arh Celok Lek 144: 56-62.
- 4. Deitch EA, Engel JM (1981) Acute acalculous cholecystitis. Ultrasonic diagnosis. Am J Surg 142: 290-292.
- 5. Prassouli A, Panagiotou J, Vakaki M, Giannatou I, Atilakos A, et al. (2007) Acute acalculous cholecystitis as the initial presentation of primary Epstein-Barr virus infection. J Pediatr Surg 42: E11-13.
- 6. Jenson HB (2000) Acute complications of Epstein-Barr virus infectious mononucleosis. Curr Opin 12: 263-268.
- 7. Barie PS, Eachempati SR (2003) Acute acalculouscholecystitis. Curr Gastroenterol Rep 5: 302-309.
- 8. Iaria C, Arena L, Di Maio G, Fracassi MG, Leonardi MS, et al. (2008) Acute acalculous cholecystitis during the course of primary Epstein-Barr virus infection: a new case and a review of the literature. Int J Infect Dis 12: 391-395.
- 9. Shaukat A, Tsai HT, Rutherford R, Anania FA (2005) Epstein-Barr virus induced hepatitis: An important cause of cholestasis. Hepatol Res 33: 24-26.
- 10. Mourani S, Dobbs SM, Genta RM, Tandon AK, Yoffe B (1994) Hepatitis A virus-associated cholecystitis. Ann Intern Med 120: 398-400.
- 11. Koch AD, van den Bosch HC, Bravenboer B (2007) Epstein-Barr virus-associated cholecystitis. Ann Intern Med 146: 826-827.
- 12. Cholongitas E, Katsogridakis K, Dasenaki M (2009) A calculous cholecystitis during the course of acute Epstein-Barr virus infection. Int J Infect Dis 13: e129-130.
- 13. Yang HN, Hong KW, Lee JS, Eom JS (2010) A case of acute cholecystitis without cholestasis caused by Epstein-Barr virus in a healthy young woman. Int J Infect Dis 14: 448-449.
- 14. Chalupa P, Kaspar M, Holub M (2009) Acute acalculous cholecystitis with pericholecystitis in a patient with Epstein-Barr Virus infectious mononucleosis. Med Sci Monit 15: 30-33.
- 15. Hagel S, Bruns T, Kantowski M, Fix P, Seidel T, et al. (2009) Cholestatic hepatitis, acute acalculouscholecystitis, and hemolytic anemia: primary Epstein-Barr virus infection under azathioprine. Inflamm Bowel Dis 15: 1613-1616.
- 16. Beltrame V, Andres A, Tona F, Sperti C (2012) Epstein-Barr virus-Associated acute acalculous cholecystitis in an adult. Am J Case Rep 13: 153-156.
- 17. Nagdev A, Ward J (2011) Bedside ultrasound diagnosis of acalculous cholecystitis from Epstein-Barr virus. West J Emerg Med 12: 481-483.
- 18. Dylewski J (2012) Acute acalculous cholecystitis caused by Epstein-Barr virus infection. Clinical Microbiology Newsletter 347-348.

Page 4 of 5 Volume 2, Article ID: 100007

- 19. Carrascosa MF, Caviedes JR, Soler-Dorda G, Saiz-Pérez C (2012) Epstein-Barr virus acute cholecystitis. BMJ Case Rep 2012.
- 20. Gagneux-Brunon A, Suy F, Pouvaret A, Pillet S, Tarantino E, et al. (2014) Acute acalculouscholecystitis, a rare complication of Epstein-Barr virus primary infection: Report of two cases and review. J Clin Virol 61: 173-175.
- 21. Çelik F, Tekin F, Yamazhan T, Gunsar F (2014) Epstein-barr virus associated acute acalculous cholecystitis. J Gastroenterol Hepatol Res 3: 1179-1180.
- 22. Agergaard J, Larsen CS (2015) Acute acalculouscholecystitis in a patient with primary Epstein-Barr virus infection: a case report and literature review. Int J Infect Dis 35: 67-72.
- 23. Koufakis T, Gabranis I (2016) Another Report of AcalculousCholecystitis in a Greek Patient with Infectious Mononucleosis: A Matter of Luck or Genetic Predisposition?. Case Reports Hepatol 2016: 6080832.
- 24. Yesilbag Z, Karadeniz A, Kaya FO (2017) Acute Acalculous Cholecystitis: A Rare Presentation of Primary Epstein-Barr Virus Infection in Adults-Case Report and Review of the Literature. Case Rep Infect Dis 2017: 5790102.
- 25. Babb RR (1992) Acute acalculous cholecystitis. A review. J Clin Gastroenterol 15: 238-241.
- 26. Miendje Deyi Y, Goubau P, Bodéus M (2000) False-positive IgM antibody tests for cytomegalovirus in patients with acute Epstein-Barr virus infection. Eur J Clin Microbiol Infect Dis 19: 557-560.

Page 5 of 5 Volume 2, Article ID: 100007